
The Git Challenge
Resources
Become familiar with the following online resources:

� The git help command (e.g. git help clone)

� book.git-scm.com (a nice intro text with inline videos)

� git-scm.com/documentation (links to web sites and videos)

� www.newartisans.com/2008/04/git-from-the-bottom-up.html
(a PDF with an intermediate-level intro to Git’s data model)

Basic Tasks
� Clone a repository by running

git clone git://github.com/git/hello-world.git

� Edit python.py, replacing World with your name, and run python python.py

� Commit your change with git add python.py and git commit (pick a
one-line “commit message” to describe your change)

� View the history in gitk to find the first 3 languages added:

� Merge my changes with
git pull git://aml.cs.byu.edu/amcnabb/hello-world.git master

� Use gitk to identify which file I changed and when:

� Try to merge my next change with
git pull git://aml.cs.byu.edu/amcnabb/hello-conflict.git master (this
will fail because of a conflict with your change)

� Resolve this conflict by editing python.py and making a single line
incorporating both your text and my text; don’t forget to delete the 3
divider lines like <<<<<<< and any other leftover text

� Commit the merged file by running git add python.py and git commit

� Overwrite a file with cp python.py java.java

� Find what has changed with git status and git diff --stat and git diff

� Restore java.java by running git checkout java.java and look at the status
and diff again

� Clone git://github.com/schacon/gitbook and browse its history in gitk

� Ask a question—give a friendly Git user a chance to help

Intermediate Tasks
Note: Some simple details are intentionally omitted for brevity. Also, tasks
marked with the † symbol modify the commit history, and although they can
be incredibly helpful for private editing, they must not be used to modify
commits that other people may have already pulled.

� Clone Git’s source code from git://git.kernel.org/pub/scm/git/git.git

� Stage two changes and reset one of them: change two files and run git add
on both of them, run git status to see what has been staged, run git reset
on one of the files, and then run git status again to see that one file is
staged while the other file is modified but unstaged

� † Amend a commit by making and commiting a change with a typo in the
commit message, then run git commit --amend to rewrite your commit
message, and run git log to see that this replaced your previous commit (if
you do a git add before the amend, then your new change will be included
as part of the amended commit)

� Create a branch with git checkout -b mybranch, make a commit, switch
back to the master branch with git checkout master, make another commit,
switch back to mybranch with git checkout mybranch, make yet another
commit, compare the branches with git diff master, switch back to the
master branch, and then merge in mybranch with git merge mybranch, see
what you did with git log or gitk, and finally delete the branch with
git branch -d mybranch

� Make a partial commit: edit README and make two changes (one to the title
and another at the end of the file), run git diff to see your changes, run
git add -p README telling it y for the first “hunk” and n for the second hunk,
then run git diff --staged to see that only part of the file has been staged,
and then commit your partial change

� Create a centralized bare repository: create a directory called
sharedrepo.git in a group-readable location, run
git --bare init --shared=group and in that directory, and if you have a
group configured run chgrp -R mygroup ., and from your personal repo
push your data with git push /path/to/sharedrepo.git master

� Merge a branch with a conflict: create a mybranch branch, change a line in
mybranch and commit, then change the same line in master and commit,
perform a merge, and when the merge fails explore the difference between
git checkout --ours filename, git checkout --theirs filename, and
git checkout -m filename, and then resolve the conflict, and finally commit
the merged file

� † Undo the most recent commit by running git reset HEAD^, use git status
to see that the changes from this undone commit are preserved, run
git reflog to see which commit you were on before and after your reset,
and go back to the original commit with git reset HEAD@{1}

� † Undo the most recent commit with a hard reset by running
git reset --hard HEAD^, use git status to see that the changes from this
undone commit are destroyed, and go back to the original commit with
git reset HEAD@{1}

� Revert a commit (creating a new commit that reverses the change): find out
about a particular commit with git log 7ec344^..7ec344 and
git diff 7ec344^..7ec344, then perform the revert with git revert 7ec344
and look at the results with git log

� Help another Git user solve a problem or find an answer

A few great Git commands have been neglected due to the awkwardness of
creating a good simple example (contributions are welcomed). We recommend
that you learn about git cherry-pick, git stash, and git rebase.

Advanced Tasks
� Pull out contrib/examples into its own repository. Hint: checkout a new

subdir branch, run
git filter-branch --subdirectory-filter contrib/examples, clone with
git clone -b subdir git git-examples, and run
git branch -m subdir master in the new repo

� Transplant a directory from one repo to another (from git/Documentation to
git-examples/docs). Hint: in the git repo, create a new transplant branch,
isolate the Documentation directory with subdirectory-filter as above,
rename to the desired path with
git filter-branch --tree-filter ”mkdir -p docs; git mv -k * docs”, and
pull the transplant branch into git-examples

� † Permanently remove the t (tests) directory from the history. Hint:
git filter-branch --index-filter ”git rm -r --cached --ignore-unmatch
t” --prune-empty (note that this will require removing and recloning any
copy of your repo)

� Rewrite the previous command using tree-filter instead of index-filter
(and consider which is better and why):

� Add a commit to a bare repository (useful for scripting). Hint: create a blob
and get its id with git hash-object -w /path/to/file.txt, find the current
head with git show-ref --heads --hash master, read the tree into an index
file with GIT_INDEX_FILE=/tmp/git_index git read-tree ”$head”, add the ref
of the blob into the index file with
GIT_INDEX_FILE=/tmp/git_index git update-index --add --cacheinfo 100644
”$blob” path/within/repo/file.txt, write the index to the repo and get the
tree id with GIT_INDEX_FILE=/tmp/git_index git write-tree, write a commit
and get the commit id with
echo ”commit message here” |git commit-tree ”$tree” -p ”$head”, and
finally update the head of the repository to be the new commit with
git update-ref refs/heads/master ”$commit” ”$head”

� Find out what git/contrib/examples is for and browse one of its scripts

� Create a new Git task to teach a concept or solve a problem

